Differential organization of touch and pain in human primary somatosensory cortex.
نویسندگان
چکیده
Processing of tactile stimuli within somatosensory cortices has been shown to be complex and hierarchically organized. However, the precise organization of nociceptive processing within these cortices has remained largely unknown. We used whole-head magnetoencephalography to directly compare cortical responses to stimulation of tactile and nociceptive afferents of the dorsum of the hand in humans. Within the primary somatosensory cortex (SI), nociceptive stimuli activated a single source whereas tactile stimuli activated two sequentially peaking sources. Along the postcentral gyrus, the nociceptive SI source was located 10 mm more medially than the early tactile SI response arising from cytoarchitectonical area 3b and corresponded spatially to the later tactile SI response. Considering a mediolateral location difference between the hand representations of cytoarchitectonical areas 3b and 1, the present results suggest generation of the single nociceptive response in area 1, whereas tactile stimuli activate sequentially peaking sources in areas 3b and 1. Thus nociceptive processing apparently does not share the complex and hierarchical organization of tactile processing subserving elaborated sensory capacities. This difference in the organization of both modalities may reflect that pain perception rather requires reactions to and avoidance of harmful stimuli than sophisticated sensory capacities.
منابع مشابه
Effects of administration of histamine and its H1, H2, and H3 receptor antagonists into the primary somatosensory cortex on inflammatory pain in rats
Objective(s): The present study investigated the effects of microinjection of histamine and histamine H1, H2, and H3 receptor antagonists, chlorpheniramine, ranitidine and thioperamide, respectively into the primary somatosensory cortex (PSC) on inflammatory pain. Material and Methods: Two stainless steel guide canulas were bilaterally implanted into the PSC of anaesthetized rats. Inf...
متن کاملThalamocortical connections of the primary somatosensory cortex
Although each subdivision of primary somatosensory cortex (SI) receives dense input from the thalamus, but the exact location and type of information that the fibers convey have not been identified yet. In the present study, the exact source of thalamocortical fibers to areas 2 and 3b was investigated using tract-tracing techniques. Following injection of tracer into area 3b, labeled neurons ...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملSomatotopic organization of human somatosensory cortices for pain: a single trial fMRI study.
The ability to locate pain plays a pivotal role in immediate defense and withdrawal behavior. However, how the brain localizes nociceptive information without additional information from somatotopically organized mechano-receptive pathways is not well understood. To investigate the somatotopic organization of the nociceptive system, we applied Thulium-YAG-laser evoked pain stimuli, which have n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2000